

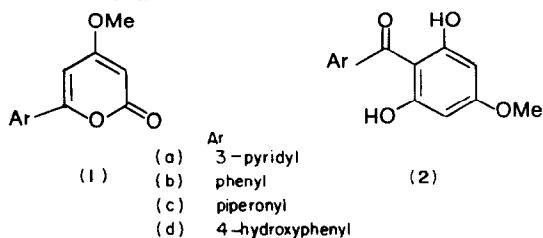
DUCKEIN, AN ALKALOID FROM *ANIBA DUCKEI**

DIRCEU DE BARROS CORRÊA

Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte

and

OTTO RICHARD GOTTLIEB


Instituto de Química, Universidade de São Paulo, Brasil

(Received 21 April 1974)

Key Word Index—*Aniba duckei*; Lauraceae; duckein; 2,6-dihydroxy-4-methoxyphenyl 3-pyridyl ketone; 2,6,4'-trihydroxy-4-methoxybenzophenone.

Abstract—A re-investigation of the trunk wood of *Aniba duckei* Kosterm. (Lauraceae) revealed the presence of two new natural compounds, 2,6-dihydroxy-4-methoxyphenyl 3-pyridyl ketone (duchein) and 2,6,4'-trihydroxy-4-methoxybenzophenone.

Aniba duckei Kosterm., the source of commercial rosewood oil [2], is an Amazonian Lauraceae species. Previous investigations revealed the presence in its trunk wood of the 2-pyrone anibine (1a) [3], 4-methoxyphenylcoumalin (1b) [4] and 4-methoxyparacotoxin (1c) [3] and of the benzophenone cotoxin (2b) [5].

Chromatographic fractionation of the material contained in the mother liquor, resulting from the crystallization of crude anibine [3], yielded, besides an additional quantity of anibine, two new compounds, $C_{12}H_6NO(OH)_2OMe$ and $C_{13}H_6O(OH)_3OMe$. Their colour, UV and IR spectra were compatible with cotoxin type 2-hydroxybenzophenone structures. The PMR spectra each contained at the high field limit of the aro-

matic region, a two-proton singlet, which can be associated with *meta*-hydrogens on phloroglucinol derived rings. The PMR spectra of the respective acetates again showed the *meta*-hydrogens represented by a singlet. These rings must, therefore, be symmetrically substituted. In the case of the dihydroxy compound this imposes, of course, partial structure (2) as the only possibility. The same structure must also represent the trihydroxy compound, since the most prominent peaks in the MS of both appear at m/e 167. Fragment ions, respectively at m/e 78 and 93, define Ar in the case of the former as pyridyl and in the case of the latter as hydroxyphenyl. Indeed, the PMR signals due to the 3-pyridyl part of anibine (1a) are all reproduced in the spectrum of the former for which, consequently, structure (2a) must be reserved. And again, the PMR signals due to an AA'BB'-system are registered in the spectrum of the other one and this must, consequently, be formulated as (2d).

Isolation of (2a), for which the name duckein is proposed, provides additional evidence for the biosynthetic connection of 2-pyrone and benzophenones in Lauraceae [6]. Chain extension of a nicotinoyl precursor by 2 acetate units would lead to anibine (1a) and by 3 acetate units would lead to duckein (2a), whereas chain extension of a benzoyl unit by 2 acetate units would lead to 4-methoxyphenylcoumalin (1b) and by 3 acetate units

* Part 29 in the series "The Chemistry of Brazilian Lauraceae". For Part 28 see Ref. 1. Sponsored by Ministério do Planejamento (Financiadora de Estudos e Projetos S.A.) and Associação Brasileira da Indústria Farmacêutica through Academia Brasileira de Ciências and by Fundação de Amparo à Pesquisa do Estado de São Paulo.

would lead to cotoin (**2b**). The availability of aryl precursor units in lauraceous plants is considered plausible on the one-hand because of the widespread natural occurrence of nicotinic acid, compared with the absence of β -3-pyridylacrylic acid, and on the other because of the presence of the benzoyl group, in the benzyl [7] and phenylethyl [8] benzoates of *Aniba* species.

EXPERIMENTAL

Isolation of anibile (1a), duckein (2a) and 2,6,4'-trihydroxy-4-methoxybenzophenone (2d). The mother liquor resulting from the crystallization of crude anibile (10 g) [3] was evaporated. The residue (3.5 g) was chromatographed on a silica column. Elution with the indicated solvents yielded in order fractions A (CHCl_3), B ($\text{CHCl}_3\text{-MeOH}$, 99:1) and C ($\text{CHCl}_3\text{-MeOH}$, 19:1). Each of these fractions was recrystallized from EtOH yielding respectively **1a** (10 mg), **2a** (15 mg) and **2d** (100 mg).

Duckein (2a). Yellow crystals, m.p. 243–245°. (Found: C, 63.58; H, 4.47; N, 5.80. $\text{C}_{13}\text{H}_{11}\text{NO}_4$ requires: C, 63.67; H, 4.52; N, 5.71%). $\lambda_{\text{max}}^{\text{EtOH}}$ (nm): 210, 235 inf., 310 (ϵ 19350, 6850, 8550); $\lambda_{\text{max}}^{\text{EtOH+NaOH}}$ (nm): 230, 275 inf., 316 (ϵ 14200, 3450, 4650); $\lambda_{\text{max}}^{\text{EtOH+NaOAc}}$ (nm): 221, 275 inf., 313 (ϵ 17150, 2950 inf., 7350); $\lambda_{\text{max}}^{\text{EtOH+HCl}}$ (nm): 215, 265, 315 (ϵ 17950, 3650, 8100). $\nu_{\text{max}}^{\text{KBr}}$ (cm^{-1}): 1635, 1600, 1570, 1530, 1425, 1385, 1325, 1260, 1200, 1160, 1087, 1035, 930, 805, 710. PMR (TFA , τ): 3.76 (s, H-3, H-5), 6.07 (s, OMe). MS (m/e): 245 (50%), M, 244 (90), 167 (100), 106 (13), 95 (12), 79 (11), 78 (37), 69 (24), 51 (32) and 39 (15). *Diacetate*, PMR (CDCl_3 , τ): 1.0 (*b*, H-2'), 1.3 (*b*, H-6'). 1.95 (*dt*, J 8.0, 2.0 Hz, H-4'), 2.65 (partially covered by solv. peak, *dd*, J ~6.5, ~5.0 Hz, H-5'), 3.31 (s, H-3, H-5), 6.12 (s, OMe), 8.07 (s, 2 COMe).

2,6,4'-Trihydroxy-4-methoxybenzophenone (2d). Yellow crystals, m.p. 179–181°. (Found: C, 64.81; H, 4.78. $\text{C}_{14}\text{H}_{12}\text{O}_5$ requires: C, 64.61; H, 4.65%). $\lambda_{\text{max}}^{\text{EtOH}}$ (nm): 211, 235 inf., 290 inf., 308, 320 inf. (ϵ 30700, 19500, 15850, 16400, 15850); no shift in presence of HCl; $\lambda_{\text{max}}^{\text{EtOH+NaOH}}$ (nm): 235, 328 (ϵ 24450, 27800); $\lambda_{\text{max}}^{\text{EtOH+NaOAc}}$ (nm): 211, 223 inf., 304, 340 (ϵ 28350, 19500 inf., 14800, 14800); $\lambda_{\text{max}}^{\text{EtOH+AlCl}_3}$ (nm): 224, 287 inf., 325 (ϵ 24950, 13000, 14800). $\nu_{\text{max}}^{\text{KBr}}$ (cm^{-1}): 3225, 1640, 1605, 1580, 1545, 1505,

1420, 1375, 1310, 1245, 1210, 1150, 1075, 1040, 965, 918, 842, 823, 800, 760, 693. PMR $[(\text{CD}_3)_2\text{CO}, \tau]$: 2.33 (~*d*, J 8.5 Hz, H-2', H-6'), 3.13 (~*d*, J 8.5 Hz, H-3', H-5'), 3.92 (s, H-3, H-5), 6.20 (s, OMe). MS (m/e): 261 (13%), M + 1, 260 (89%), M, 259 (89%) M + 1, 167 (75), 166 (100), 138 (37), 121 (41), 93 (22). *Triacetate*. Colourless crystals, m.p. 134–135°. $\nu_{\text{max}}^{\text{KBr}}$ (cm^{-1}): 1770, 1760, 1660, 1630, 1580, 1565, 1500, 1465, 1430, 1370, 1325, 1270, 1200, 1155, 1130, 1050, 890 and 855. PMR (CDCl_3 , τ): 2.19 (~*d*, J 8.5 Hz, H-2', H-6'), 2.85 (~*d*, J 8.5 Hz, H-3', H-5'), 3.33 (s, H-3, H-5), 6.14 (s, OMe), 7.67 (s, OCOMe-4'), 8.09 (s, OCOMe-2 and -6). *Monomethyl ether* was obtained by methylation with CH_2N_2 /Et₂O and purification by TLC (SiO_2 , $\text{C}_6\text{H}_6\text{-AcOEt-EtOH}$, 50:43:7). PMR $[(\text{CD}_3)_2\text{CO}, \tau]$: 2.40 (~*d*, J 8.5 Hz, H-2', H-6'), 3.10 (~*d*, J 8.5 Hz, H-3', H-5'), 3.83 (s, H-3, H-5), 6.13 (s, OMe-4), 6.38 (s, OMe-4').

Acknowledgement—The MS were registered by Dr. A. Aragão Craveiro by courtesy of Prof. E. Wenkert, Rice University, Houston, Texas, U.S.A.

REFERENCES

1. Aiba, C. J. and Gottlieb, O. R. (1975) *Phytochemistry* **14**, 253.
2. Guenther, E. (1950) in *The Essential Oils*, Vol. IV, p. 192. Van Nostrand, New York.
3. Gottlieb, O. R., Fineberg, M., Guimarães, M. L., Magalhães, M. T. and Maravalhas, N. (1964) *Perf. Essent. Oil Record* **55**, 253.
4. Mors, W. B., Gottlieb, O. R. and Djerassi, C. (1957) *J. Amer. Chem. Soc.* **79**, 4507.
5. Gottlieb, O. R., Magalhães, M. T. and Mors, W. B. (1959) *Ann. Assoc. bras. Quim.* **18**, 37.
6. Gottlieb, O. R. and Mors, W. B. (1958) *J. Amer. Chem. Soc.* **80**, 2263.
7. Geissman, T. A. and Crout, D. H. G. (1969) in *Organic Chemistry of Secondary Plant Metabolism*, p. 171. Freeman, Cooper, San Francisco.
8. Moraes, A. A. de Rezende, C. M. A. da M., Bülow, M. V. von, Mourão, J. C., Gottlieb, O. R., Marx, M. C., Rocha, A. I. da and Magalhães, M. T. (1972) *Acta Amazonica* **2** (1), 41.